calculate higher co-moment betas, or 'systematic' variance, skewness, and kurtosis
BetaCoVariance(Ra, Rb) BetaCoSkewness(Ra, Rb, test = FALSE) BetaCoKurtosis(Ra, Rb)
Ra | an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns |
---|---|
Rb | an xts, vector, matrix, data frame, timeSeries or zoo object of index, benchmark, or secondary asset returns to compare against |
test | condition not implemented yet |
Boudt, Kris, Brian G. Peterson, and Christophe Croux. 2008. Estimation and Decomposition of Downside Risk for Portfolios with Non-Normal Returns. Journal of Risk. Winter.
Martellini, Lionel, and Volker Ziemann. 2007. Improved Forecasts of Higher-Order Comoments and Implications for Portfolio Selection. EDHEC Risk and Asset Management Research Centre working paper.
CoMoments
data(managers) BetaCoVariance(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE])#> [1] 0.3431621BetaCoSkewness(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE])#> [1] 0.04542927BetaCoKurtosis(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE])#> [1] 0.1988373BetaCoKurtosis(managers[,1:6], managers[,8,drop=FALSE])#> HAM1 HAM2 HAM3 HAM4 HAM5 #> Beta Cokurtosis: SP500 TR 0.4814681 0.1988373 0.506819 0.8483555 0.2738611 #> HAM6 #> Beta Cokurtosis: SP500 TR 0.1541281BetaCoKurtosis(managers[,1:6], managers[,8:7])#> HAM1 HAM2 HAM3 HAM4 HAM5 #> Beta Cokurtosis: SP500 TR 0.4814681 0.1988373 0.506819 0.8483555 0.2738611 #> Beta Cokurtosis: EDHEC LS EQ 0.7100547 1.2676023 1.426660 1.4533001 1.2831205 #> HAM6 #> Beta Cokurtosis: SP500 TR 0.1541281 #> Beta Cokurtosis: EDHEC LS EQ 0.8618328